Rabu, 12 Juli 2023

Aplikasi Mux Demux




(Kontrol Plang Kereta Api)

1. Tujuan[Kembali]

  1. Untuk menyelesaikan tugas sistem digital yang diberikan oleh Bapak Dr. Darwison, M.T.
  2. Mengetahui komponen yang digunakan dalam membuat rangkaian pengaplikasian mux demux yaitu Kontrol Palang Kereta Api
  3. Mengetahui bentuk rangkaian dan mensimulasikan pengaplikasian decoder dan encoder pada software proteus. 

2. Alat dan Bahan[Kembali]

Alat


   1. Voltmeter DC

Spesifikasi

  1. Rentang pengukuran: Ini mengacu pada rentang tegangan yang dapat diukur oleh voltmeter. Misalnya, voltmeter mungkin memiliki rentang pengukuran antara 0 hingga 10 volt atau 0 hingga 1000 volt.
  2. Akurasi: Ini adalah tingkat ketepatan voltmeter dalam mengukur tegangan. Akurasi biasanya dinyatakan dalam persentase kesalahan maksimum. Sebagai contoh, voltmeter mungkin memiliki akurasi ±1% yang berarti kesalahan maksimum yang mungkin terjadi adalah 1% dari nilai yang diukur.
  3. Resolusi: Resolusi mengacu pada jumlah digit yang ditampilkan pada voltmeter. Resolusi yang lebih tinggi berarti voltmeter dapat menampilkan angka yang lebih rinci. Sebagai contoh, voltmeter dengan resolusi 3 digit dapat menampilkan angka hingga tiga angka di belakang koma.
  4. Impedansi input: Ini adalah resistansi internal voltmeter terhadap arus listrik yang melewati alat. Impedansi input yang lebih tinggi pada voltmeter memungkinkan pengukuran tegangan yang lebih akurat tanpa mengganggu sirkuit yang sedang diukur.
  5. Jenis input: Voltmeter dapat dirancang untuk mengukur tegangan searah (DC) atau tegangan bolak-balik (AC). Beberapa voltmeter juga dapat mengukur kedua jenis tegangan.


 2. Battery


Spesifikasi dan Pinout Baterai

  • Input voltage: ac 100~240v / dc 10~30v
  • Output voltage: dc 1~35v
  • Max. Input current: dc 14a
  • Charging current: 0.1~10a
  • Discharging current: 0.1~1.0a
  • Balance current: 1.5a/cell max
  • Max. Discharging power: 15w
  • Max. Charging power: ac 100w / dc 250w
  • Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
  • Ukuran: 126x115x49mm
  • Berat: 460gr
 
 

 3. Power


 

 
    Spesifikasi: 

  1. Daya listrik (Power supply): Ini mengacu pada daya yang diberikan oleh sumber listrik ke peralatan elektronik. Daya ini diukur dalam watt (W). Spesifikasi daya listrik mencakup tegangan input yang diperlukan (misalnya 110V atau 220V AC) dan frekuensi (misalnya 50Hz atau 60Hz).
  2. Konsumsi daya (Power consumption): Ini adalah jumlah daya yang dikonsumsi oleh peralatan elektronik saat beroperasi. Konsumsi daya juga diukur dalam watt (W) dan umumnya dicantumkan dalam spesifikasi produk. Informasi ini membantu untuk mengetahui berapa banyak daya yang diperlukan oleh peralatan tersebut dan mempengaruhi kebutuhan daya listrik yang dibutuhkan.
  3. Daya output (Power output): Jika Anda merujuk pada peralatan yang menghasilkan daya, seperti power amplifier atau power bank, spesifikasi power output akan memberikan informasi tentang daya yang dihasilkan oleh perangkat tersebut. Ini juga diukur dalam watt (W) dan mungkin mencakup spesifikasi daya maksimum dan daya kontinu yang dapat dihasilkan.


Bahan


1.  Sensor Infrared



    


2. Sensor Vibration

Spesifikasi :
  • Vsuplai : DC 3.3V-5V
  •  Arus : 15mA
  •  Sensor : SW-420 Normally Closed
  •  Output : digital
  •  Dimensi : 3,8 cm x 1,3 cm x 0,7 cm
  •  Berat : 10 g

3. Sound Sensor





Spesifikasi dari modul sensor suara antara lain:

  •     Sensitivitas dapat diatur (pengaturan manual pada potensiometer)
  •     Condeser yang digunakan memiliki sensitivitas yang tinggi
  •     Tegangan kerja antara 3.3V – 5V
  •     Terdapat 2 pin keluaran yaitu tegangan analog dan Digital output
  •     Sudah terdapat lubang baut untuk instalasi
  •     Sudah terdapat indikator led


4. Sensor Touch


Spesifikasi: 
  • Konsumsi daya yang rendah
  • Bisa menerima tegangan dari 2 ~ 5.5V DC
  • Dapat menggantikan fungsi saklar tradisional
  • Dilengkapi 4 lobang baut untuk memudahkan pemasangan
  • Tegangan kerja : 2v s/d 5.5v (optimal 3V)
  • Output high VOH : 0.8 VCC (typical)
  • Output low VOL : 0.3 VCC (max)
  • Arus Output Pin Sink (@ VCC 3V, VOL 0.6V) : 8 mA
  • Arus Output pin pull-up (@ VCC=3V, VOH=2.4V) : 4 mA
  • Waktu respon (low power mode): max 220 ms
  • Waktu respon (touch mode): max 60 ms
  • Ukuran: 24 mm x 24 mm x 7.2 mm

5. Demultiplexer IC 4556


    Datasheet IC 4556: 



6. IC 74147


Spesifikasi :




7. Potensiometer



Spesifikasi: 

  1. Nilai Resistansi: Spesifikasi ini mencantumkan nilai resistansi potensiometer. Nilai resistansi dapat bervariasi, misalnya, potensiometer 10K memiliki resistansi 10.000 ohm (10 kiloohm). Nilai resistansi ini menentukan rentang resistansi yang dapat disesuaikan oleh potensiometer.
  2. Toleransi: Toleransi resistansi mengacu pada kisaran persentase di mana nilai resistansi potensiometer dapat bervariasi dari nilai yang ditentukan. Misalnya, jika potensiometer memiliki toleransi ±10%, maka nilai resistansi yang sebenarnya dapat berbeda hingga 10% dari nilai yang ditentukan.
  3. Daya nominal: Ini adalah daya maksimum yang dapat ditangani oleh potensiometer tanpa merusak komponen. Daya biasanya diukur dalam watt (W) dan memberikan gambaran tentang seberapa besar potensiometer dapat menangani arus listrik tanpa mengalami overheating atau kerusakan.
  4. Jenis Potensiometer: Ada beberapa jenis potensiometer yang tersedia, termasuk potensiometer linier dan potensiometer logaritmik (log potensiometer). Jenis potensiometer ini memiliki kurva resistansi yang berbeda saat putaran atau penggeseran digunakan.
  5. Jumlah Putaran: Potensiometer dengan lebih dari satu putaran memberikan presisi yang lebih tinggi dalam mengatur resistansi. Jumlah putaran biasanya dinyatakan dalam putaran lengkap atau putaran parsial (misalnya, 1 putaran, 10 putaran, 270 derajat, dll.).


8. Transistor




Spesifikasi: 



9. Relay


Spesifikasi:





10. Motor DC



Spesifikasi: 



11. Op Amp


Spesifikasi:




12. Gerbang AND


Spesifikasi  :

  • Catu daya : 3 V - 15 V
  • Fungsi : Quad 2-Input AND Gate
  • Propagation delay : 55 ns
  • Level tegangan I/O : CMOS
  • Kemasan : DIP 14-pin

13. Inverter (Not)




Spesifikasi



14. Dioda



Spesifikasi:

  1. Tegangan sebalik (Reverse Voltage): Ini adalah tegangan maksimum yang dapat diterapkan pada dioda dalam arah sebalik (reverse direction) tanpa menyebabkan kerusakan. Jika tegangan sebalik melebihi spesifikasi ini, dioda dapat mengalami breakdown dan mengalirkan arus yang signifikan dalam arah sebalik.
  2. Tegangan maju (Forward Voltage): Tegangan maju adalah tegangan yang diperlukan untuk mengaktifkan dioda dan menyebabkan aliran arus melalui dioda dalam arah maju. Tegangan maju bervariasi tergantung pada jenis dan bahan dioda, seperti dioda silikon memiliki tegangan maju sekitar 0,6 hingga 0,7 volt, sementara dioda germanium memiliki tegangan maju sekitar 0,2 hingga 0,3 volt.
  3. Arus maju maksimum (Forward Current): Ini adalah arus maksimum yang dapat dialirkan melalui dioda dalam arah maju tanpa menyebabkan kerusakan. Melebihi spesifikasi ini dapat menyebabkan pemanasan berlebih pada dioda dan mengakibatkan kegagalan.
  4. Waktu pemulihan (Recovery Time): Ini adalah waktu yang diperlukan untuk dioda untuk beralih dari kondisi berhenti (reverse bias) ke kondisi aktif (forward bias) setelah tegangan sebalik dihilangkan. Waktu pemulihan mempengaruhi kemampuan dioda untuk digunakan dalam aplikasi berfrekuensi tinggi.
  5. Daya dissipasi (Power Dissipation): Daya dissipasi adalah daya maksimum yang dapat diserap oleh dioda tanpa menyebabkan kerusakan. Daya dissipasi biasanya diukur dalam watt dan tergantung pada kemampuan dioda untuk menyerap panas.


15. Switch atau Button




Spesifikasi:









16. LED




Spesifikasi:


3. Dasar Teori[Kembali]

 1. Sensor Touch

Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan


Pinout: 

Grafik respon:

2. Sensor Infrared

Infrared (IR) detektor atau sensor infra merah adalah komponen elektronika yang dapat mengidentifikasi cahaya infra merah (infra red, IR). Sensor infra merah atau detektor infra merah saat ini ada yang dibuat khusus dalam satu modul dan dinamakan sebagai IR Detector Photomodules. IR Detector Photomodules merupakan sebuah chip detektor inframerah digital yang di dalamnya terdapat fotodiode dan penguat (amplifier).
Sensor infared terdiri dari led infrared sebagai pemancar sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.

Prinsip Kerja Sensor Infrared


Ketika pemancar IR memancarkan radiasi, ia mencapai objek dan beberapa radiasi memantulkan kembali ke penerima IR. Berdasarkan intensitas penerimaan oleh penerima IR, output dari sensor ditentukan.


Prinsip kerja rangkaian sensor infrared berdasarkan pada gambar 2. Adalah ketika cahaya infra merah diterima oleh fototransistor maka basis fototransistor akan mengubah energi cahaya infra merah menjadi arus listrik sehingga basis akan berubah seperti saklar (swith closed) atau fototransistor akan aktif (low) secara sesaat seperti gambar 3:



Grafik Respon Sensor Infrared



Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.

3. Sensor Sound









Sensor suara adalah sebuah alat yang mampu mengubah gelombang Sinusioda suara menjadi gelombang sinus energi listrik (Alternating Sinusioda Electric Current). Sensor suara berkerja berdasarkan besar/kecilnya kekuatan gelombang suara yang mengenai membran sensor yang menyebabkan bergeraknya membran sensor yang juga terdapat sebuah kumparan kecil di balik membran tadi naik & turun. Oleh karena kumparan tersebut sebenarnya adalah ibarat sebuah pisau berlubang-lubang, maka pada saat ia bergerak naik-turun, ia juga telah membuat gelombng magnet yang mengalir melewatinya terpotong-potong. Kecepatan gerak kumparan menentukan kuat-lemahnya gelombang listrik yang dihasilkannya.
Sensor suara adalah sensor yang cara kerjanya merubah besaran suara menjadi besaran listrik, dan dipasaran sudah begitu luas penggunaannya. Komponen yang termasuk dalam Sensor suara yaitu electric condenser microphone atau mic kondenser.
Intensitas suara adalah ukuran dari "aliran energi melewati satuan luas per satuan waktu" dan unit pengukuran adalah W/m2 Probe intensitas suara mikrofon ini dirancang untuk menangkap intensitas suara bersama dengan unit arah aliran sebagai besaran vektor. Hal ini dicapai dengan menggabungkan lebih dari satu mikrofon di probe untuk mengukur aliran energi suara. mikrofon konvensional dapat mengukur tekanan suara (unit: Pa), yang mewakili intensitas bunyi di tempat tertentu (satu titik), tetapi dapat mengukur arah aliran. Mikrofon intensitas bunyi Oleh karena itu digunakan untuk sumber suara memeriksa dan untuk mengukur kekuatan suara.

Prinsip kerja : 
Sensor suara adalah sensor yang cara kerjanya yaitu merubah besaran suara menjadi besaran listrik. Sinyal yang masuk akan di olah sehingga akan menghasilkan satu kondisi yaitu kondisi 1 atau 0. Sensor suara banyak digunakan dalam kehidupan sehari-hari, Contoh Pengaplikasian sensor ini adalah yang bekerja pada system robot. Suara yang diterima oleh microfon akan di transfer ke pre amp mic, fungsi pre amp mic ini adalah untuk memperkuat sinyal suara yang masuk kedalam komponen.
Setelah sinyal suara diterima oleh preamp mic, kemudian di kirim lagi ke rangkaian pengkonfersi yang mana rangkaian ini berfungsi untuk merubah sinyal suara yang berbentuk sinyal digital menjadi sinya analog agar bisa dibaca oleh mikrokontroler. Jika sinyal tersebut diterima oleh mikro kontroler maka akan diolah sesuai dengan program yang dibuat, apakah robot akan berjalan atau berhenti.
Suara yang masuk direkam oleh komponen kemudian akan disimpan oleh memory. Sebagai contoh jika kita bertepuk tangan 1 kali maka akan dikenali sebagai kondisi 1 atau on sehingga robot dapat berjalan. Jika bertepuk tangan 2 kali maka robot akan mati atau mendapat sinyal kondisi 0. Penggunaan sinyal tergantung dari user bagaimana dia menggunakannya.
Kesensitifan  sensor suara dapat diatur, semakin banyak condensator yang digunakan pada pre amp maka akan semakin baik daya sensitive dari sensor suara tersebut. Begitu juga pada saat penggunaan suara harus dalam kondisi tertentu, karena jika terdapat suara lain yang masuk maka akan tidak dikenali oleh sensor, begitu pula frekuensi yang digunakan harus sesuai pada saat kita menginput suara awal dan input suara pada saat menjalankan program.
Spesifikasi :
1. Sensitivitas dapat diatur (pengaturan manual pada potensiometer)
2. Condeser yang digunakan memiliki sensitivitas yang tinggi
3. Tegangan kerja antara 3.3V – 5V
4. Terdapat 2 pin keluaran yaitu tegangan analog dan Digital output
5. Sudah terdapat lubang baut untuk instalasi
6. Sudah terdapat indikator led
Konfigurasi pin:

Grafik:


4. Sensor Vibration 













Vibration sensor / Sensor getaran ini memegang peranan penting dalam kegiatan pemantauan sinyal getaran karena terletak di sisi depan (front end) dari suatu proses pemantauan getaran mesin. Secara konseptual, sensor getaran berfungsi untuk mengubah besar sinyal getaran fisik menjadi sinyal getaran analog dalam besaran listrik dan pada umumnya berbentuk tegangan listrik. 

Pemakaian sensor getaran ini memungkinkan sinyal getaran tersebut diolah secara elektrik sehingga memudahkan dalam proses manipulasi sinyal, diantaranya:
   - Pembesaran sinyal getaran
   - Penyaringan sinyal getaran dari sinyal pengganggu.
   - Penguraian sinyal, dan lainnya.
Sensor getaran dipilih sesuai dengan jenis sinyal getaran yang akan dipantau. Karena itu, sensor getaran dapat dibedakan menjadi:
  - Sensor penyimpangan getaran (displacement transducer)
  - Sensor kecepatan getaran (velocity tranducer)
  - Sensor percepatam getaran (accelerometer).
Pemilihan sensor getaran untuk keperluan pemantauan sinyal getaran didasarkan atas pertimbangan berikut:
  - Jenis sinyal getaran
  -  Rentang frekuensi pengukuran
  -  Ukuran dan berat objek getaran.
  -  Sensitivitas sensor
Berdasarkan cara kerjanya sensor dapat dibedakan menjadi:
   - Sensor aktif, yakni sensor yang langsung menghasilkan tegangan listrik tanpa perlu catu daya
     (power supply) dari luar, misalnya Velocity Transducer.
   - Sensor pasif yakni sensor yang memerlukan catu daya dari luar agar dapat berkerja.
Grafik perbandingan frekuensi dengan sensitivitas sensor getaran :


5. Resistor





Resistor merupakan komponen elektronik yang memiliki dua pin dan didesain untuk mengatur tegangan listrik dan arus listrik. Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan hukum Ohm:

Resistor digunakan sebagai bagian dari rangkaian elektronik dan sirkuit elektronik, dan merupakan salah satu komponen yang paling sering digunakan. Resistor dapat dibuat dari bermacam-macam komponen dan film, bahkan kawat resistansi (kawat yang dibuat dari paduan resistivitas tinggi seperti nikel-kromium).

Karakteristik utama dari resistor adalah resistansinya dan daya listrik yang dapat dihantarkan. Karakteristik lain termasuk koefisien suhuderau listrik (noise), dan induktansi. Resistor dapat diintegrasikan kedalam sirkuit hibrida dan papan sirkuit cetak, bahkan sirkuit terpadu. Ukuran dan letak kaki bergantung pada desain sirkuit, kebutuhan daya resistor harus cukup dan disesuaikan dengan kebutuhan arus rangkaian agar tidak terbakar.

Sebagian besar resistor yang kamu lihat akan memiliki empat pita berwarna . Begini cara mereka membacanya :
1. Dua pita pertama menentukan nilai dari resistansi
2. Pita ketiga menentukan faktor pengali, yang akan memberikan nilai resistansi.
3. Dan terakhir, pita keempat menentukan nilai toleransi.




    





    6. Transistor NPN







Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Transistor dapat berfungsi semacam kran listrik, di mana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.

Pada umumnya, transistor memiliki 3 terminal, yaitu Basis (B), Emitor (E) dan Kolektor (C). Tegangan yang di satu terminalnya misalnya Emitor dapat dipakai untuk mengatur arus dan tegangan yang lebih besar daripada arus input Basis, yaitu pada keluaran tegangan dan arus output Kolektor.

Transistor merupakan komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil (stabilisator) dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori dan fungsi rangkaian-rangkaian lainnya.





Transistor merupakan salah satu Komponen Elektronika Aktif yang paling sering digunakan dalam rangkaian Elektronika, baik rangkaian Elektronika yang paling sederhana maupun rangkaian Elektronika yang rumit dan kompleks. Transistor pada umumnya terbuat dari bahan semikonduktor seperti Germanium, Silikon, dan Gallium Arsenide.

Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.

  • Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.
  • Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.
  • Basis (B) berguna untuk mengatur arah gerak muatan negatif yang keluar dari transistor melalui kolekto

Berfungsi sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Selain itu, transistor biasanya juga dapat digunakan sebagai saklar dalam rangkaian elektronika. Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titik jenuh. Pada titik jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut off sehingga tidak ada arus dari kolektor ke emitor. 




Rumus-rumus transistor:

Konfigurasi Transistor:


Konfigurasi Common Base adalah konfigurasi yang kaki Basis-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT.  Pada Konfigurasi Common Base, sinyal INPUT dimasukan ke Emitor  dan sinyal OUTPUT-nya diambil dari Kolektor, sedangkan kaki Basis-nya di-ground-kan. Oleh karena itu, Common Base juga sering disebut dengan istilah “Grounded Base”. Konfigurasi Common Base ini menghasilkan Penguatan Tegangan antara sinyal INPUT dan sinyal OUTPUT namun tidak menghasilkan penguatan pada arus.

Konfigurasi Common Collector (CC) atau Kolektor Bersama memiliki sifat dan fungsi yang berlawan dengan Common Base (Basis Bersama). Kalau pada Common Base menghasilkan penguatan Tegangan tanpa memperkuat Arus, maka Common Collector ini memiliki fungsi yang dapat menghasilkan Penguatan  Arus namun tidak menghasilkan penguatan Tegangan. Pada Konfigurasi Common Collector, Input diumpankan ke Basis Transistor sedangkan Outputnya diperoleh dari Emitor Transistor sedangkan Kolektor-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT. Konfigurasi Kolektor bersama (Common Collector) ini sering disebut juga dengan Pengikut Emitor (Emitter Follower) karena tegangan sinyal Output pada Emitor hampir sama dengan tegangan Input Basis.

Konfigurasi Common Emitter (CE) atau Emitor Bersama merupakan Konfigurasi Transistor yang paling sering digunakan, terutama pada penguat yang membutuhkan penguatan Tegangan dan Arus secara bersamaan. Hal ini dikarenakan Konfigurasi Transistor dengan Common Emitter ini menghasilkan penguatan Tegangan dan Arus antara sinyal Input dan sinyal Output. Common Emitter adalah konfigurasi Transistor dimana kaki Emitor Transistor di-ground-kan dan dipergunakan bersama untuk INPUT dan OUTPUT. Pada Konfigurasi Common Emitter ini, sinyal INPUT dimasukan ke Basis dan sinyal OUTPUT-nya diperoleh dari kaki Kolektor.

 Karakteristik Input

Transistor adalah komponen aktif yang menggunakan aliran electron sebagai prinsip kerjanya didalam bahan. Sebuah transistor memiliki tiga daerah doped yaitu daerah emitter, daerah basis dan daerah disebut kolektor. Transistor ada dua jenis yaitu NPN dan PNP. Transistor memiliki dua sambungan: satu antara emitter dan basis, dan yang lain antara kolektor dan basis. Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan dioda kolektor-basis, atau disingkat dengan dioda kolektor.

Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.

 Pemberian bias 
        Ada beberapa macam rangkaian pemberian bias, yaitu: 
 1. Fixed bias yaitu, arus bias IB didapat dari VCC yang dihubungkan ke kaki B melewati tahanan R seperti gambar 58. Karakteristik Output.


2.Self Bias adalah arus input didapatkan dari pemberian tegangan input VBB seperti gambar 60.


Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.


7. Relay







Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Pada dasarnya, Relay terdiri dari 4 komponen dasar  yaitu :

  1. Electromagnet (Coil)
  2. Armature
  3. Switch Contact Point (Saklar)
  4. Spring

Berikut ini merupakan gambar dari bagian-bagian Relay :Struktur dasar Relay

Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :

  • Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi CLOSE (tertutup)
  • Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi OPEN (terbuka)

Berdasarkan gambar diatas, sebuah Besi (Iron Core) yang dililit oleh sebuah kumparan Coil yang berfungsi untuk mengendalikan Besi tersebut. Berdasarkan penggolongan jumlah Pole dan Throw-nya sebuah relay, maka relay dapat digolongkan menjadi :

  • Single Pole Single Throw (SPST) : Relay golongan ini memiliki 4 Terminal, 2 Terminal untuk Saklar dan 2 Terminalnya lagi untuk Coil.
  • Single Pole Double Throw (SPDT) : Relay golongan ini memiliki 5 Terminal, 3 Terminal untuk Saklar dan 2 Terminalnya lagi untuk Coil.
  • Double Pole Single Throw (DPST) : Relay golongan ini memiliki 6 Terminal, diantaranya 4 Terminal yang terdiri dari 2 Pasang Terminal Saklar sedangkan 2 Terminal lainnya untuk Coil. Relay DPST dapat dijadikan 2 Saklar yang dikendalikan oleh 1 Coil.
  • Double Pole Double Throw (DPDT) : Relay golongan ini memiliki Terminal sebanyak 8 Terminal, diantaranya 6 Terminal yang merupakan 2 pasang Relay SPDT yang dikendalikan oleh 1 (single) Coil. Sedangkan 2 Terminal lainnya untuk Coil.

Untuk lebih jelas mengenai Penggolongan Relay berdasarkan Jumlah Pole dan Throw, silakan lihat gambar dibawah ini :Jenis relay berdasarkan Pole dan Throw


   8. Buzzer






Kata buzzer sebetulnya berasal dari Bahasa Inggris, artinya bel, lonceng, atau alarm. Sedangkan pengertian buzzer secara harfiah adalah alat yang digunakan untuk atau dimanfaatkan untuk menyampaikan dan menyebarluaskan pengumuman. Jadi pada bagian ini buzzer digunakan sebagai output yaitu sebagai penanda atau sebagai bel peringatan.

9.  Logic state







Gerbang Logika (Logic Gates) adalah sebuah entitas untuk melakukan pengolahan input-input yang berupa bilangan biner (hanya terdapat 2 kode bilangan biner yaitu, angka 1 dan 0) dengan menggunakan Teori Matematika Boolean sehingga dihasilkan sebuah sinyal output yang dapat digunakan untuk proses berikutnya.  

Input dan Output pada Gerbang Logika hanya memiliki 2 level. Kedua Level tersebut pada umumnya dapat dilambangkan dengan :

  • HIGH (tinggi) dan LOW (rendah)
  • TRUE (benar) dan FALSE (salah)
  • ON (Hidup) dan OFF (Mati)
  • 1 dan 0

 7 jenis gerbang logika :

  1. Gerbang AND : Apabila semua / salah satu input merupakan bilangan biner (berlogika) 0, maka output akan menjadi 0. Sedangkan jika semua input adalah bilangan biner (berlogika) 1, maka output akan berlogika 1.
  2. Gerbang OR  : Apabila semua / salah satu input merupakan bilangan biner (berlogika) 1, maka output akan menjadi 1. Sedangkan jika semua input adalah bilangan biner (berlogika) 0, maka output akan berlogika 0.
  3. Gerbang NOT : Fungsi Gerbang NOT adalah sebagai Inverter (pembalik). Nilai output akan berlawanan dengan inputnya.
  4. Gerbang NAND : Apabila semua / salah satu input bilangan biner (berlogika) 0, maka outputnya akan berlogika 1. Sedangkan jika semua input adalah bilangan biner (berlogika) 1, maka output akan berlogika 0.
  5. Gerbang NOR : Apabila semua / salah satu input bilangan biner (berlogika) 1, maka outputnya akan berlogika 0. Sedangkan jika semua input adalah bilangan biner (berlogika) 0, maka output akan berlogika 1.
  6. Gerbang XOR : Apabila input berbeda (contoh : input A=1, input B=0) maka output akan berlogika 1. Sedangakan jika input adalah sama, maka output akan berlogika 0.
  7. Gerbang XNOR : Apabila input berbeda (contoh : input A=1, input B=0) maka output akan berlogika 0. Sedangakan jika input adalah sama, maka output akan berlogika 1. 
10. OPAMP

Operational Amplifier atau lebih dikenal dengan istilah Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas. Dalam bahasa Indonesia, Op-Amp atau Operational Amplifier sering disebut juga dengan Penguat Operasional. Terminal yang terdapat pada Simbol Op-Amp (Operational Amplifier/penguat operasional) diantaranya adalah :

  1. Masukan non-pembalik (Non-Inverting) +
  2. Masukan pembalik (Inverting) –
  3. Keluaran Vout
  4. Catu daya positif +V
  5. Catu daya negatif -V
Karakteristik Faktor Penguat atau Gain pada Op-Amp pada umumnya ditentukan oleh Resistor Eksternal yang terhubung diantara Output dan Input pembalik (Inverting Input). Konfigurasi dengan umpan balik negatif (Negative Feedback) ini biasanya disebut dengan Closed-Loop configuration atau Konfigurasi Lingkar Tertutup.  Sedangkan pada Konfigurasi Lingkar Terbuka atau Open-Loop Configuration, besar penguatannya adalah tak terhingga (∞) sehingga besarnya tegangan output hampir atau mendekati tegangan Vcc.
Konfigurasi Op-Amp (Closed loop and Open Loop)
    11. LED


Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya. Bentuk LED mirip dengan sebuah bohlam (bola lampu) yang kecil dan dapat dipasangkan dengan mudah ke dalam berbagai perangkat elektronika. Berbeda dengan Lampu Pijar, LED tidak memerlukan pembakaran filamen sehingga tidak menimbulkan panas dalam menghasilkan cahaya.  Oleh karena itu, saat ini LED (Light Emitting Diode) yang bentuknya kecil telah banyak digunakan sebagai lampu penerang dalam LCD TV yang mengganti lampu tube. LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda. 
Keanekaragaman Warna pada LED tersebut tergantung pada wavelength (panjang gelombang) dan senyawa semikonduktor yang dipergunakannya. Berikut ini adalah Tabel Senyawa Semikonduktor yang digunakan untuk menghasilkan variasi warna pada LED :
Bahan SemikonduktorWavelengthWarna
Gallium Arsenide (GaAs)850-940nmInfra Merah
Gallium Arsenide Phosphide (GaAsP)630-660nmMerah
Gallium Arsenide Phosphide (GaAsP)605-620nmJingga
Gallium Arsenide Phosphide Nitride (GaAsP:N)585-595nmKuning
Aluminium Gallium Phosphide (AlGaP)550-570nmHijau
Silicon Carbide (SiC)430-505nmBiru
Gallium Indium Nitride (GaInN)

    12. Motor DC


Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC. Motor Listrik DC atau DC Motor ini menghasilkan sejumlah putaran per menit atau biasanya dikenal dengan istilah RPM (Revolutions per minute) dan dapat dibuat berputar searah jarum jam maupun berlawanan arah jarum jam apabila polaritas listrik yang diberikan pada Motor DC tersebut dibalikan. 

Bentuk dan Simbol Motor DC

Pengertian Motor DC dan Prinsip Kerjanya

Prinsip Kerja Motor DC
Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan RotorStator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), Armature Winding (Kumparan Jangkar), Commutator (Komutator) dan Brushes (kuas/sikat arang).


    13. Switch


Sakelar adalah sebuah perangkat yang digunakan untuk memutuskan jaringan listrik, atau untuk menghubungkannya. Jadi saklar pada dasarnya adalah alat penyambung atau pemutus aliran listrik.
Cara Kerja Saklar Listrik
Pada dasarnya, sebuah Saklar sederhana terdiri dari dua bilah konduktor (biasanya adalah logam) yang terhubung ke rangkaian eksternal, Saat kedua bilah konduktor tersebut terhubung maka akan terjadi hubungan arus listrik dalam rangkaian. Sebaliknya, saat kedua konduktor tersebut dipisahkan maka hubungan arus listrik akan ikut terputus.

Berikut ini adalah Simbol Saklar berdasarkan jumlah Pole dan Throw-nya.
Simbol Saklar dan Jumlah Pole dan Throw

14. Gerbang logika AND ( IC 4081 )


Gerbang AND akan berlogika 1 apabila semua inputnya berlogika 1, namun bila salah satu atau semua keluarannya berlogika 0 maka keluarannya berlogika 0.
Perhatikan Tabel kebenaran dibawah untuk menjelaskan gerbang AND
Tabel kebenaran gerbang AND

Tabel kebenaran gerbang AND

Gambar : Macam - macam gerbang logika
dan tabel kebenarannya




15. Encoder 74147


IC 74147 adalah IC encoder digital yang mengkodekan 9 jalur input menjadi 4 jalur output. Ini juga dikenal sebagai encoder prioritas Desimal ke BCD. Istilah encoder prioritas digunakan karena menyediakan pengkodean untuk jalur data urutan tertinggi sebagai prioritas pertama. Itu dibuat menggunakan teknologi Transistor-Transistor Logic (TTL). Ini adalah IC encoder 10 hingga 4. Pada artikel ini, kita akan melihat Diagram Pin IC 74147, Diagram Sirkuit Internal IC 74147, dan tabel Truth atau tabel fungsi IC 74147.

Here, you can see the truth table of IC 74147



16. Demux IC 4556


Demux IC 4556 merupakan jenis IC, dimana memiliki 2 input dan Input enable dengan aktif rendah. Dan 4 output yang mewakili angka decimal dari 0-3 dengan output berupa tegangan rendah. Demultiplexer  adalah perangkat yang mengambil  sinyal input yang tunggal yang memilih salah satu dari banyak output yang di data baris yang berhubungan ke input tunggal multimplexer. Satu multiplexer yang banyak dipakai dengan demultiplexer untuk melengkapkan dan  di ujung penerima. Bentuk multiplexer elektronik yang bisa dianggap sebagai beberapa masukan tunggal output switch yang demultiplexer sebagai bentuk masukan tunggak , ganda output switch .
Demultiplexer juga bisa diartikan dengan rangkaian logika yang menerima satu input data yang mendistrubusikan input tersebut yang beberapa output yang telah disediakan juga merupakan kebalikan multiplexer.  Selain IC dari keluarga TTL yang mendukung fungsi multiplexer adalah IC dari keluarga CMOS. Walaupun sebenarnya memang IC dari keluarga TTL lebih banyak yang mendukung fungsi multiplexer dibanding CMOS. Untuk prinsip kerja dari IC multiplexer keluarga CMOS ini sebenarnya sama saja dengan rangkaian multiplexer gerbang logika ataupun IC TTL. Yang pasti semuanya mengacu pada fungsi multiplexer yang sesungguhnya, yakni penetapan satu jalur keluaran yang mewakili dari banyaknya jalur input. Secara penggunaan simbol memang mungkin antara IC TTL dan CMOS memiliki perbedaan tapi sebenarnya aturan yang dijalankan adalah sama. Sebagai acuan anda jika tertarik untuk menggunakan IC dari keluarga CMOS khususnya seri 4556, saya sertakan juga tabel kebenarannya di bawah ini :Multiplexer dengan IC CMOS 4556. Adapun tabel kebenaran IC 4556 adalah : 

INPUT

OUTPUT

E

A0

A1

O0

O1

O2

O3

L

L

L

L

H

H

H

L

H

L

H

L

H

H

L

L

H

H

H

L

H

L

H

H

H

H

H

L

H

X

X

H

H

H

H

L = LOW

H = HIGH



17. Dioda

Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.Dioda memiliki simbol sebagai berikut :
Cara Kerja Dioda
Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).
A. Kondisi tanpa tegangan
Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda
B. Kondisi tegangan positif (Forward-bias)
Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup
C. Kondisi tegangan negatif (Reverse-bias)
Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.


18. Power Supply

Power Supply adalah salah satu hardware di dalam perangkat komputer yang berperan untuk memberikan suplai daya. Biasanya komponen power supplay ini bisa ditemukan pada chasing komputer dan berbentuk persegi.
Pada dasarnya Power Supply membutuhkan sumber listrik yang kemudian diubah menjadi energi yang menggerakkan perangkat elektronik. Sistem kerjanya cukup sederhana yakni dengan mengubah daya 120V ke dalam bentuk aliran dengan daya yang sesuai kebutuhan komponen-komponen tersebut. Sesuai dengan pengertian power supply pada komputer, maka fungsi utamanya adalah untuk mengubah arus AC menjadi arus DC yang kemudian diubah menjadi daya atau energi yang dibutuhkan komponen-komponen pada komputer seperti motherboard, CD Room, Hardisk, dan komponen lainnya.
Berdasarkan rancangannya, power supply dapat diklasifikasikan menjadi dua jenis, yaitu:
  1. Power Supply/ Catu Daya Internal; yaitu power supply yang dibuat terintegrasi dengan motherboard atau papan rangkaian induk. Contohnya; ampilifier, televisi, DVD Player; power supply-nya menyatu dengan motherboard di dalam chasing perangkat tersebut.
  2. Power Supply/ Catu Daya Eksternal; yaitu power supply yang dibuat terpisah dari motherboard perangkat elektroniknya. Contohnya charger Laptop dan charger HP.
19. Battery

Baterai atau elemen kering adalah salah satu alat listrik yang berfungsi sebagai penyimpan energi listrik dan mengeluarkan tegangan dalam bentuk listrik (sebagai sumber tegangan). Simbol baterai pada suatu rangkaian listrik dengan tegangan DC atau rangkaian elektronika :


Pada umumnya baterai terdiri dari tiga komponen yang penting yaitu :
1. Batang karbon (C) sebagai anode (kutub positif baterai).
2. Seng (Zn) sebagai katode (kutub negatif baterai)
3. Amonium dioksida (NH4CI) sebagai larutan elektrolit (penghantar)

Terdapat dua jenis baterai yaitu :
1. Baterai Primer 
Baterai adalah baterai yang hanya dapat digunakan sekali, menggunakan reaksi kimia yang tidak dapat dibalik (irreversible reaction).  pada umumnya dijual adalah baterai yang bertegangan listrik 1,5 volt.
2. Baterai Sekunder
Baterai sekunder atau biasanya disebut rechargeable battery adalah baterai yang dapat di isi ulang menggunakan reaksi kimia yang bersifat dapat dibalik (reversible reaction) biasanya digunakan pada telepon genggam.
Adapun salah satu persamaan menghitung tegangan adalah :

P = V x I
Keterangan :
P  = Daya (W)
V = Tegangan yang terukur (V)
I   = Arus yang terukur (I)

4. Percobaan[Kembali]

    1. Prosedur Percobaan

  1. Siapkan semua alat dan bahan yang diperlukan
  2. Siapkan alat dan bahan yang akan digunakan di library proteus, seperti sensor vibration, sensor pir, flame sensor, gerbang AND, buzzer, logic state, decoder, seven segment, resistor, transistor, opamp, dan lain-lain.
  3. Susunlah alat dan bahan tersebut seperti gambar di bawah ini
  4. Resistor  yang digunakan ada diberi hambatan 10k dan 220.
  5. Baterai yang digunakan diberi tegangan yaitu 12V.
  6. Power yang digunakan diberi tegangan yaitu 5V dan 7V.
  7. Buzzer yang digunakan diberi tegangan 12V
  8. Relay yang digunakan diberi tegangan 5V.
  9. Setelah semua komponen terangkai, maka cobalah untuk menjalankannya.
  10. Jalankan sensor infrared , sound, Vibration  dengan menekan logicstate yaitu mengubah dari angka nol menjadi satu.
  11. Jika rangkaian benar, maka sensor, sensor mq-2 dan sensor Pir akan bekerja  sehingga led menyala, buzzer berbunyi dan motor pun bergerak.
  12. Jika logicstatenya tidak dijalankan atau berlogika 0 maka motor tidak akan bergerak, led tidak menyala, dan buzzer tidak berbunyi.
  13. Jika sensor vibration diaktifkan, maka pada akan terlihat ouputnya berupa led hidup dan buzzer berbunyi.
  14. Jika infrared sensor diaktifkan, maka akan mampu mengaktifkan motor sehingga bergerak.
  15. Jika sensor sound diaktifkan maka output yang dihasilkan adalah led menyala dan motor bergerak.

    2. Rangkaian Percobaan


    3. Prinsip Kerja

Apabila vibrasion sensor dan sensor infrared tidak mendeteksi adanya getaran dan suara dimana kedua sensor berlogika 0, maka output pada sensor sebesar 0 V akan diteruskan ke pin A dan pin B 4556 sehingga seven segmen akan menampilkan angka 0 sebagai tanda bahwa kedua sensor tidak ada menedeteksi apapun.

Sensor Vibration
Apabila sensor vibrasion mendeteksi adanya getaran yaitu getaran dari kereta api yang mau lewat yaitu saat sensor berlogika 1 maka output sensor sebesar 5 V diteruskan ke R1 kemudian ke Q1 terus menuju ke pin A dari Demuxtiplexer IC 4556 kemudian outputnya Akan menjadi input pada Encoder IC 74147. Kemudian tegangan diteruskan ke gerbang NOT kemudian menuju ke R4 kemudian menuju ke kaki base Q3 dimana tegangan yang terukur adalah 0.77 V yang mampu mengaktifkan transistor Q3. Karena transistor aktif, maka ada arus dari power supply menuju relay terus ke kaki kolektor terus ke kaki emiter terus ke ground. Jenis bias yang digunkaan adalah self bias. Karena adanya arus yang mengalor pada relay, maka relay menjadi aktif dimana switchnya berpindah dari kanan ke kiri sehingga rangkaian loop pada relay menjadi tertutup sehingga ada tegangan dari baterai yang mengalir pada rangkaian loop yang mengakibatkan indikator alarm dan alarm (buzzer) sebagai penanda bahwa kereta api akan lewat menjadi aktif.   

Sensor Sound
Apabila sensor sound mendeteksi adanya suara yang ditimbulkan oleh kereta api (baik itu suara dari kereta api maupun alarm bahwa kereta api lewat) maka sensor akan aktif sehingga sensor berlogika 1 yang mengakibatkan adanya arus yang mengalir dari power supply menuju ke vcc kemudian dikeluarkan ke kaki Vout. Tegangan yang keluar dari kaki Vout sensor sebesar 5 V diteruskan ke R2 kemudian ke Q2 terus menuju ke pin B dari Demuxtiplexer IC 4556 kemudian outputnya Akan menjadi input pada Encoder IC 74147. Kemudian tegangan diteruskan ke gerbang NOT kemudian menuju ke R5 kemudian menuju ke kaki base Q4 dimana tegangan yang terukur adalah 0.77 V yang mampu mengaktifkan transistor Q4. Karena transistor aktif, maka ada arus dari power supply menuju relay terus ke kaki kolektor terus ke kaki emiter terus ke ground. Jenis bias yang digunkaan adalah fixed bias. Karena adanya arus yang mengalir pada relay, maka relay menjadi aktif dimana switchnya berpindah dari kanan ke kiri sehingga rangkaian loop pada relay menjadi tertutup sehingga ada tegangan dari baterai yang mengalir pada rangkaian loop yang mengakibatkan motor sebagaai plang menutup menjadi aktif dan led sebagai indikator plang mejadi katif.

Sensor Infrared
Apabila sensor infrared aktif maka ada arus yang mengalir dari power supply menuju ke kaki Vcc kemudian dikeluarkan berupa tegangan di kaki Vout. Tegangan tersebut diumpankan ke sebuah resistor kemudian menuju ke OPAMP. Dimana dalam hal ini, OPAMP bertindak sebagai inverting amplifier yang mengakibatkan terjadinya penguatan pada kaki inverting sebanyak 2 kali. Hal ini mengakibatkan nilai dari Vout sama dengan 2 kali Vin. Tegangan tersebut diumpankan pada sebuah R8 kemudian diteruskan ke kaki base transistor. Tgangan yang terukur pada kaki base adalah 0.86V dimana tegangan ini sudah mampu mengaktifkan transistor sehingga transistor aktif. Untuk bias yang digunakan adalah self bias. Karena transistor aktif, maka ada arus dari power supply menuju ke relay kemudian diteruskan ke kaki kolekotor terus ke emiter terus ke ground. Karena ada arus yang mengalir pada relay, mkaa relay menjadi aktif yang ditandai dengan switch pada relay bergeser dari kanan ke kiri sehingga rangkain loop pada relay menjadi tertutup. Karena rangkaian loop pada relay menjadi tertutup, maka adanya tegangan dari baterai yang mengalir pada rangkaian loop yang kemudian mengalir ke motor yang membuat motor sebagai plang pembuka menjadi aktif. 
⇉Apabila sensor vibration, sensor sound, dan sensor infrared tidak aktif, maka akan berlogika 0 yang membuat motor tidak bergerak, led tidak hidup, dan buzzer pun tidak berbunyi.

Sensor Touch
Saat ketiga sensor tidak berfungsi namun plang harus tetap diturunkan, maka penjaga pos akan menekan tombol darurat dimana terdapat sensor touch, maka sensor touch akan mendeteksi hal tersebut dan aktif, ditandai dengan logika 1 pada logicprobe maka akan menghasilkan tegangan sebesar 5V lalu diumpankan ke R13, Lalu adanya pernguatan tegangan dengan non inverting amplifier sebesar 2x menjadi 10V, lalu diumpankan ke R14, lalu menuju ke kaki base transistor. Vbe bernilai 0.82V sehingga transistor aktif, dan arus dapat mengalir dari power menuju relay, menuju kaki kolektor, emitor, dan ke ground. Transistor bekerja dengan self bias. Karena arus mengalir pada relay, maka loop rangkaian tertutup dan arus mengalir sehingga motor bergerak sebagai indikator plang diturunkan

5. Video[Kembali]

A. Video Simulasi Rangkaian


B. Video Merangkai Rangkaian Aplikasi



  • Download Library Sensor:
  1. Download Library Sensor Vibration klik disini
  2. Download Library Sensor Sound klik disini
  3. Download Library Sensor Infrared klik disini
  4. Download Library Sensor Touch klik disini
  • Download Datasheet Sensor: 
  1. Download Datasheet Sensor Vibration klik disini
  2. Download Datasheet Sensor Sound  klik disini
  3. Download Datasheet Sensor Infrared  klik disini
  4. Download Datasheet Sensor Touch  klik disini
  • Download Datasheet Komponen:
  1. Download Datasheet LED klik disini
  2. Download Datasheet Switch klik disini
  3. Download Datasheet Dioda klik disini
  4. Download Datasheet Relay klik disini
  5. Download Datasheet IC 74147 klik disini
  6. Download Datasheet IC 4556 klik disini
  7. Download Datasheet Resistor klik disini
  8. Download Datasheet OPAMP klik disini

Tidak ada komentar:

Posting Komentar

Entri yang Diunggulkan

Modul 4 [menuju akhir] [KEMBALI KE MENU SEBELUMNYA] DAFTAR ISI 1. Pendahuluan 2. Tujuan 3. Alat dan Bahan 4. Dasar Teori 5. Percobaan Percob...