Rabu, 19 Juli 2023

APLIKASI FLIP- FLOP


Aplikasi Flip Flop
(Keamanan Parkir)

1. Tujuan[Kembali]

  1. Untuk menyelesaikan tugas sistem digital yang diberikan oleh Bapak Dr. Darwison, M.T.
  2. Mengetahui komponen yang digunakan dalam membuat rangkaian pengaplikasian mux demux yaitu Kontrol Palang Kereta Api
  3. Mengetahui bentuk rangkaian dan mensimulasikan pengaplikasian flipflop pada software proteus. 

2. Alat dan Bahan[Kembali]

Alat


   1. Voltmeter DC

Spesifikasi

  1. Rentang pengukuran: Ini mengacu pada rentang tegangan yang dapat diukur oleh voltmeter. Misalnya, voltmeter mungkin memiliki rentang pengukuran antara 0 hingga 10 volt atau 0 hingga 1000 volt.
  2. Akurasi: Ini adalah tingkat ketepatan voltmeter dalam mengukur tegangan. Akurasi biasanya dinyatakan dalam persentase kesalahan maksimum. Sebagai contoh, voltmeter mungkin memiliki akurasi ±1% yang berarti kesalahan maksimum yang mungkin terjadi adalah 1% dari nilai yang diukur.
  3. Resolusi: Resolusi mengacu pada jumlah digit yang ditampilkan pada voltmeter. Resolusi yang lebih tinggi berarti voltmeter dapat menampilkan angka yang lebih rinci. Sebagai contoh, voltmeter dengan resolusi 3 digit dapat menampilkan angka hingga tiga angka di belakang koma.
  4. Impedansi input: Ini adalah resistansi internal voltmeter terhadap arus listrik yang melewati alat. Impedansi input yang lebih tinggi pada voltmeter memungkinkan pengukuran tegangan yang lebih akurat tanpa mengganggu sirkuit yang sedang diukur.
  5. Jenis input: Voltmeter dapat dirancang untuk mengukur tegangan searah (DC) atau tegangan bolak-balik (AC). Beberapa voltmeter juga dapat mengukur kedua jenis tegangan.


 2. Battery


Spesifikasi dan Pinout Baterai

  • Input voltage: ac 100~240v / dc 10~30v
  • Output voltage: dc 1~35v
  • Max. Input current: dc 14a
  • Charging current: 0.1~10a
  • Discharging current: 0.1~1.0a
  • Balance current: 1.5a/cell max
  • Max. Discharging power: 15w
  • Max. Charging power: ac 100w / dc 250w
  • Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
  • Ukuran: 126x115x49mm
  • Berat: 460gr
 
 

 3. Power


 

 
    Spesifikasi: 

  1. Daya listrik (Power supply): Ini mengacu pada daya yang diberikan oleh sumber listrik ke peralatan elektronik. Daya ini diukur dalam watt (W). Spesifikasi daya listrik mencakup tegangan input yang diperlukan (misalnya 110V atau 220V AC) dan frekuensi (misalnya 50Hz atau 60Hz).
  2. Konsumsi daya (Power consumption): Ini adalah jumlah daya yang dikonsumsi oleh peralatan elektronik saat beroperasi. Konsumsi daya juga diukur dalam watt (W) dan umumnya dicantumkan dalam spesifikasi produk. Informasi ini membantu untuk mengetahui berapa banyak daya yang diperlukan oleh peralatan tersebut dan mempengaruhi kebutuhan daya listrik yang dibutuhkan.
  3. Daya output (Power output): Jika Anda merujuk pada peralatan yang menghasilkan daya, seperti power amplifier atau power bank, spesifikasi power output akan memberikan informasi tentang daya yang dihasilkan oleh perangkat tersebut. Ini juga diukur dalam watt (W) dan mungkin mencakup spesifikasi daya maksimum dan daya kontinu yang dapat dihasilkan.


Bahan

1.  Sensor Infrared


    
2. Sensor MQ-2

               

Spesifikasi sensor pada sensor gas MQ-2 adalah sebagai berikut:

  •     Catu daya pemanas : 5V AC/DC
  •     Catu daya rangkaian : 5VDC
  •     Range pengukuran : 200 - 5000ppm untuk LPG, propane 300 - 5000ppm untuk butane 5000 -      20000ppm untuk methane 300 - 5000ppm untuk Hidrogen
  •     Keluaran : analog (perubahan tegangan)

3. Sensor Magnetik



  • Sensitivitas: Sensitivitas sensor magnet mengacu pada kemampuannya untuk mendeteksi medan magnetik. Sensitivitas yang lebih tinggi berarti sensor dapat mendeteksi medan magnetik yang lebih lemah.
  • Rentang Pengukuran: Rentang pengukuran adalah jangkauan medan magnetik yang dapat dideteksi oleh sensor. Misalnya, sebuah sensor magnet mungkin memiliki rentang pengukuran ±1000 Gauss, yang berarti dapat mendeteksi medan magnetik antara -1000 hingga +1000 Gauss.
  • Resolusi: Resolusi mengacu pada tingkat kehalusan dengan yang sensor dapat membedakan perubahan kecil dalam medan magnetik. Resolusi yang lebih tinggi memungkinkan sensor untuk mendeteksi perubahan medan magnetik yang lebih kecil.
  • Akurasi: Akurasi menggambarkan sejauh mana sensor dapat mengukur medan magnetik dengan ketepatan. Akurasi yang tinggi berarti hasil pengukuran sensor mendekati nilai yang sebenarnya.
  • Response Time: Response time adalah waktu yang dibutuhkan oleh sensor untuk merespons perubahan medan magnetik. Semakin cepat respons time, semakin cepat sensor dapat mendeteksi perubahan.
  • Jenis Output: Sensor magnet dapat menghasilkan output dalam berbagai bentuk, seperti analog (misalnya, tegangan yang berubah sesuai dengan medan magnetik) atau digital (misalnya, pulsa yang berubah saat mendeteksi medan magnetik).
  • Daya Operasi: Spesifikasi ini mengacu pada daya yang diperlukan oleh sensor untuk beroperasi. Biasanya diukur dalam volt atau milliwatt

4. Sensor Touch


Spesifikasi: 
  • Konsumsi daya yang rendah
  • Bisa menerima tegangan dari 2 ~ 5.5V DC
  • Dapat menggantikan fungsi saklar tradisional
  • Dilengkapi 4 lobang baut untuk memudahkan pemasangan
  • Tegangan kerja : 2v s/d 5.5v (optimal 3V)
  • Output high VOH : 0.8 VCC (typical)
  • Output low VOL : 0.3 VCC (max)
  • Arus Output Pin Sink (@ VCC 3V, VOL 0.6V) : 8 mA
  • Arus Output pin pull-up (@ VCC=3V, VOH=2.4V) : 4 mA
  • Waktu respon (low power mode): max 220 ms
  • Waktu respon (touch mode): max 60 ms
  • Ukuran: 24 mm x 24 mm x 7.2 mm

5. IC 4013

Spesifikasi: 



7. Potensiometer



Spesifikasi: 

  1. Nilai Resistansi: Spesifikasi ini mencantumkan nilai resistansi potensiometer. Nilai resistansi dapat bervariasi, misalnya, potensiometer 10K memiliki resistansi 10.000 ohm (10 kiloohm). Nilai resistansi ini menentukan rentang resistansi yang dapat disesuaikan oleh potensiometer.
  2. Toleransi: Toleransi resistansi mengacu pada kisaran persentase di mana nilai resistansi potensiometer dapat bervariasi dari nilai yang ditentukan. Misalnya, jika potensiometer memiliki toleransi ±10%, maka nilai resistansi yang sebenarnya dapat berbeda hingga 10% dari nilai yang ditentukan.
  3. Daya nominal: Ini adalah daya maksimum yang dapat ditangani oleh potensiometer tanpa merusak komponen. Daya biasanya diukur dalam watt (W) dan memberikan gambaran tentang seberapa besar potensiometer dapat menangani arus listrik tanpa mengalami overheating atau kerusakan.
  4. Jenis Potensiometer: Ada beberapa jenis potensiometer yang tersedia, termasuk potensiometer linier dan potensiometer logaritmik (log potensiometer). Jenis potensiometer ini memiliki kurva resistansi yang berbeda saat putaran atau penggeseran digunakan.
  5. Jumlah Putaran: Potensiometer dengan lebih dari satu putaran memberikan presisi yang lebih tinggi dalam mengatur resistansi. Jumlah putaran biasanya dinyatakan dalam putaran lengkap atau putaran parsial (misalnya, 1 putaran, 10 putaran, 270 derajat, dll.).


8. Transistor




Spesifikasi: 



9. Relay


Spesifikasi:



Konfigurasi: 



10. Motor DC



Spesifikasi: 



11. Op Amp


Spesifikasi:


12. Dioda



Spesifikasi:

  1. Tegangan sebalik (Reverse Voltage): Ini adalah tegangan maksimum yang dapat diterapkan pada dioda dalam arah sebalik (reverse direction) tanpa menyebabkan kerusakan. Jika tegangan sebalik melebihi spesifikasi ini, dioda dapat mengalami breakdown dan mengalirkan arus yang signifikan dalam arah sebalik.
  2. Tegangan maju (Forward Voltage): Tegangan maju adalah tegangan yang diperlukan untuk mengaktifkan dioda dan menyebabkan aliran arus melalui dioda dalam arah maju. Tegangan maju bervariasi tergantung pada jenis dan bahan dioda, seperti dioda silikon memiliki tegangan maju sekitar 0,6 hingga 0,7 volt, sementara dioda germanium memiliki tegangan maju sekitar 0,2 hingga 0,3 volt.
  3. Arus maju maksimum (Forward Current): Ini adalah arus maksimum yang dapat dialirkan melalui dioda dalam arah maju tanpa menyebabkan kerusakan. Melebihi spesifikasi ini dapat menyebabkan pemanasan berlebih pada dioda dan mengakibatkan kegagalan.
  4. Waktu pemulihan (Recovery Time): Ini adalah waktu yang diperlukan untuk dioda untuk beralih dari kondisi berhenti (reverse bias) ke kondisi aktif (forward bias) setelah tegangan sebalik dihilangkan. Waktu pemulihan mempengaruhi kemampuan dioda untuk digunakan dalam aplikasi berfrekuensi tinggi.
  5. Daya dissipasi (Power Dissipation): Daya dissipasi adalah daya maksimum yang dapat diserap oleh dioda tanpa menyebabkan kerusakan. Daya dissipasi biasanya diukur dalam watt dan tergantung pada kemampuan dioda untuk menyerap panas.


13.  Ground




14. Switch atau Button




Spesifikasi:









15. LED




Spesifikasi:


3. Dasar Teori[Kembali]

 1. Sensor Touch

Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan


Pinout: 

Grafik respon:

2. Sensor Infrared





  





Infrared (IR) detektor atau sensor infra merah adalah komponen elektronika yang dapat mengidentifikasi cahaya infra merah (infra red, IR). Sensor infra merah atau detektor infra merah saat ini ada yang dibuat khusus dalam satu modul dan dinamakan sebagai IR Detector Photomodules. IR Detector Photomodules merupakan sebuah chip detektor inframerah digital yang di dalamnya terdapat fotodiode dan penguat (amplifier).
Sensor infared terdiri dari led infrared sebagai pemancar sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.

Prinsip Kerja Sensor Infrared


Ketika pemancar IR memancarkan radiasi, ia mencapai objek dan beberapa radiasi memantulkan kembali ke penerima IR. Berdasarkan intensitas penerimaan oleh penerima IR, output dari sensor ditentukan.


Prinsip kerja rangkaian sensor infrared berdasarkan pada gambar 2. Adalah ketika cahaya infra merah diterima oleh fototransistor maka basis fototransistor akan mengubah energi cahaya infra merah menjadi arus listrik sehingga basis akan berubah seperti saklar (swith closed) atau fototransistor akan aktif (low) secara sesaat seperti gambar 3:



Grafik Respon Sensor Infrared



Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.

3. Sensor Magnetik

Sensor magnet adalah sensor yang mudah terpengaruh dan peka terhadap medan magnet kemudian memberikan perubahan kondisi output. Prinsip kerja Sensor magnet yaitu akan aktif ketika konduktor mempengaruhi medan magnet, sehingga magnet tersebut tertolak atau tertarik sesuai dengan pengaruh konduktor yang diberikan. Disebut juga Relai Buluh adalah Alat yang akan terpengaruh Medan Magnet dan akan memberikan perubahan kondisi pada keluaran, seperti layaknya saklar dua kondisi (on/off) yang digerakkan oleh adanya medan magnet disekitarnya. Biasanya sensor ini dikemas dalam bentuk kemasan yang hampa dan bebas dari debu, kelembapan, asap maupun uap.

Cara Kerja Magnet
Sensor ini akan bekerja ketika jenis konduktor berada/mempengaruhi keberadaan medan magnet sehingga magent dapat tertarik atau tertolak sesuai pengaruh yang diberikan.

Grafik Respon Sensor Magnetik

4. Sensor MQ-2
                  
Sensor MQ-2 berfungsi untuk mendeteksi keberadaan asap yang berasal dari gas mudah terbakar di udara. Pada dasarnya sensor ini terdiri dari tabung aluminium yang dikelilingi oleh silikon dan di pusatnya ada elektroda yang terbuat dari aurum di mana ada element pemanasnya.

Ketika terjadi proses pemanasan, kumparan akan dipanaskan sehingga SnO2 keramik menjadi semikonduktor atau sebagai penghantar sehingga melepaskan elektron dan ketika asap dideteksi oleh sensor dan mencapai aurum elektroda maka output sensor MQ-2 akan menghasilkan tegangan analog.

Spesifikasi sensor pada sensor gas MQ-2 adalah sebagai berikut:

  •     Catu daya pemanas : 5V AC/DC
  •     Catu daya rangkaian : 5VDC
  •     Range pengukuran : 200 - 5000ppm untuk LPG, propane 300 - 5000ppm untuk butane 5000 -  20000 ppm untuk methane 300 - 5000ppm untuk Hidrogen
  •     Keluaran : analog (perubahan tegangan)

konfigurasi dari sensor MQ-S :

  •     Pin 1 merupakan heater internal yang terhubung dengan ground.
  •     Pin 2 merupakan tegangan sumber (VC) dimana Vc < 24 VDC.
  •     Pin 3 (VH) digunakan untuk tegangan pada pemanas (heater internal) dimana VH = 5VDC.
  •     Pin 4 merupakan output yang akan menghasilkan tegangan analog.

    Berdasarkan grafik diatas, dapat dilihat bahwa konsentrasi minimum yang dapat diuji adalah 100ppm dan maksimumnya 10000ppm atau konsentrasi gasnya antara 0.01% dan 1%. Namun, rumusnya tidak dapat ditentukan karena hubungan grafik antara rasio dan konsentrasi adalah nonlinear.


5. Resistor





Resistor merupakan komponen elektronik yang memiliki dua pin dan didesain untuk mengatur tegangan listrik dan arus listrik. Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan hukum Ohm:

Resistor digunakan sebagai bagian dari rangkaian elektronik dan sirkuit elektronik, dan merupakan salah satu komponen yang paling sering digunakan. Resistor dapat dibuat dari bermacam-macam komponen dan film, bahkan kawat resistansi (kawat yang dibuat dari paduan resistivitas tinggi seperti nikel-kromium).

Karakteristik utama dari resistor adalah resistansinya dan daya listrik yang dapat dihantarkan. Karakteristik lain termasuk koefisien suhuderau listrik (noise), dan induktansi. Resistor dapat diintegrasikan kedalam sirkuit hibrida dan papan sirkuit cetak, bahkan sirkuit terpadu. Ukuran dan letak kaki bergantung pada desain sirkuit, kebutuhan daya resistor harus cukup dan disesuaikan dengan kebutuhan arus rangkaian agar tidak terbakar.

Sebagian besar resistor yang kamu lihat akan memiliki empat pita berwarna . Begini cara mereka membacanya :
1. Dua pita pertama menentukan nilai dari resistansi
2. Pita ketiga menentukan faktor pengali, yang akan memberikan nilai resistansi.
3. Dan terakhir, pita keempat menentukan nilai toleransi.




    





    6. Transistor NPN


Pinout: 



Transistor merupakan salah satu Komponen Elektronika Aktif yang paling sering digunakan dalam rangkaian Elektronika, baik rangkaian Elektronika yang paling sederhana maupun rangkaian Elektronika yang rumit dan kompleks. Transistor pada umumnya terbuat dari bahan semikonduktor seperti Germanium, Silikon, dan Gallium Arsenide.

Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.

  • Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.
  • Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.
  • Basis (B) berguna untuk mengatur arah gerak muatan negatif yang keluar dari transistor melalui kolekto

Berfungsi sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Selain itu, transistor biasanya juga dapat digunakan sebagai saklar dalam rangkaian elektronika. Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titik jenuh. Pada titik jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut off sehingga tidak ada arus dari kolektor ke emitor. 




Rumus-rumus transistor:

Konfigurasi Transistor:


Konfigurasi Common Base adalah konfigurasi yang kaki Basis-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT.  Pada Konfigurasi Common Base, sinyal INPUT dimasukan ke Emitor  dan sinyal OUTPUT-nya diambil dari Kolektor, sedangkan kaki Basis-nya di-ground-kan. Oleh karena itu, Common Base juga sering disebut dengan istilah “Grounded Base”. Konfigurasi Common Base ini menghasilkan Penguatan Tegangan antara sinyal INPUT dan sinyal OUTPUT namun tidak menghasilkan penguatan pada arus.

Konfigurasi Common Collector (CC) atau Kolektor Bersama memiliki sifat dan fungsi yang berlawan dengan Common Base (Basis Bersama). Kalau pada Common Base menghasilkan penguatan Tegangan tanpa memperkuat Arus, maka Common Collector ini memiliki fungsi yang dapat menghasilkan Penguatan  Arus namun tidak menghasilkan penguatan Tegangan. Pada Konfigurasi Common Collector, Input diumpankan ke Basis Transistor sedangkan Outputnya diperoleh dari Emitor Transistor sedangkan Kolektor-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT. Konfigurasi Kolektor bersama (Common Collector) ini sering disebut juga dengan Pengikut Emitor (Emitter Follower) karena tegangan sinyal Output pada Emitor hampir sama dengan tegangan Input Basis.

Konfigurasi Common Emitter (CE) atau Emitor Bersama merupakan Konfigurasi Transistor yang paling sering digunakan, terutama pada penguat yang membutuhkan penguatan Tegangan dan Arus secara bersamaan. Hal ini dikarenakan Konfigurasi Transistor dengan Common Emitter ini menghasilkan penguatan Tegangan dan Arus antara sinyal Input dan sinyal Output. Common Emitter adalah konfigurasi Transistor dimana kaki Emitor Transistor di-ground-kan dan dipergunakan bersama untuk INPUT dan OUTPUT. Pada Konfigurasi Common Emitter ini, sinyal INPUT dimasukan ke Basis dan sinyal OUTPUT-nya diperoleh dari kaki Kolektor.

 Karakteristik Input

Transistor adalah komponen aktif yang menggunakan aliran electron sebagai prinsip kerjanya didalam bahan. Sebuah transistor memiliki tiga daerah doped yaitu daerah emitter, daerah basis dan daerah disebut kolektor. Transistor ada dua jenis yaitu NPN dan PNP. Transistor memiliki dua sambungan: satu antara emitter dan basis, dan yang lain antara kolektor dan basis. Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan dioda kolektor-basis, atau disingkat dengan dioda kolektor.

Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.

 Pemberian bias 
        Ada beberapa macam rangkaian pemberian bias, yaitu: 
 1. Fixed bias yaitu, arus bias IB didapat dari VCC yang dihubungkan ke kaki B melewati tahanan R seperti gambar 58. Karakteristik Output.


2.Self Bias adalah arus input didapatkan dari pemberian tegangan input VBB seperti gambar 60.


Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.

    7. Relay







Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Pada dasarnya, Relay terdiri dari 4 komponen dasar  yaitu :

  1. Electromagnet (Coil)
  2. Armature
  3. Switch Contact Point (Saklar)
  4. Spring

Berikut ini merupakan gambar dari bagian-bagian Relay :Struktur dasar Relay

Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :

  • Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi CLOSE (tertutup)
  • Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi OPEN (terbuka)

Berdasarkan gambar diatas, sebuah Besi (Iron Core) yang dililit oleh sebuah kumparan Coil yang berfungsi untuk mengendalikan Besi tersebut. Berdasarkan penggolongan jumlah Pole dan Throw-nya sebuah relay, maka relay dapat digolongkan menjadi :

  • Single Pole Single Throw (SPST) : Relay golongan ini memiliki 4 Terminal, 2 Terminal untuk Saklar dan 2 Terminalnya lagi untuk Coil.
  • Single Pole Double Throw (SPDT) : Relay golongan ini memiliki 5 Terminal, 3 Terminal untuk Saklar dan 2 Terminalnya lagi untuk Coil.
  • Double Pole Single Throw (DPST) : Relay golongan ini memiliki 6 Terminal, diantaranya 4 Terminal yang terdiri dari 2 Pasang Terminal Saklar sedangkan 2 Terminal lainnya untuk Coil. Relay DPST dapat dijadikan 2 Saklar yang dikendalikan oleh 1 Coil.
  • Double Pole Double Throw (DPDT) : Relay golongan ini memiliki Terminal sebanyak 8 Terminal, diantaranya 6 Terminal yang merupakan 2 pasang Relay SPDT yang dikendalikan oleh 1 (single) Coil. Sedangkan 2 Terminal lainnya untuk Coil.

Untuk lebih jelas mengenai Penggolongan Relay berdasarkan Jumlah Pole dan Throw, silakan lihat gambar dibawah ini :Jenis relay berdasarkan Pole dan Throw


   8. Buzzer




Kata buzzer sebetulnya berasal dari Bahasa Inggris, artinya bel, lonceng, atau alarm. Sedangkan pengertian buzzer secara harfiah adalah alat yang digunakan untuk atau dimanfaatkan untuk menyampaikan dan menyebarluaskan pengumuman. Jadi pada bagian ini buzzer digunakan sebagai output yaitu sebagai penanda atau sebagai bel peringatan.

    9.  Logic state






Gerbang Logika (Logic Gates) adalah sebuah entitas untuk melakukan pengolahan input-input yang berupa bilangan biner (hanya terdapat 2 kode bilangan biner yaitu, angka 1 dan 0) dengan menggunakan Teori Matematika Boolean sehingga dihasilkan sebuah sinyal output yang dapat digunakan untuk proses berikutnya.  

Input dan Output pada Gerbang Logika hanya memiliki 2 level. Kedua Level tersebut pada umumnya dapat dilambangkan dengan :

  • HIGH (tinggi) dan LOW (rendah)
  • TRUE (benar) dan FALSE (salah)
  • ON (Hidup) dan OFF (Mati)
  • 1 dan 0

 7 jenis gerbang logika :

  1. Gerbang AND : Apabila semua / salah satu input merupakan bilangan biner (berlogika) 0, maka output akan menjadi 0. Sedangkan jika semua input adalah bilangan biner (berlogika) 1, maka output akan berlogika 1.
  2. Gerbang OR  : Apabila semua / salah satu input merupakan bilangan biner (berlogika) 1, maka output akan menjadi 1. Sedangkan jika semua input adalah bilangan biner (berlogika) 0, maka output akan berlogika 0.
  3. Gerbang NOT : Fungsi Gerbang NOT adalah sebagai Inverter (pembalik). Nilai output akan berlawanan dengan inputnya.
  4. Gerbang NAND : Apabila semua / salah satu input bilangan biner (berlogika) 0, maka outputnya akan berlogika 1. Sedangkan jika semua input adalah bilangan biner (berlogika) 1, maka output akan berlogika 0.
  5. Gerbang NOR : Apabila semua / salah satu input bilangan biner (berlogika) 1, maka outputnya akan berlogika 0. Sedangkan jika semua input adalah bilangan biner (berlogika) 0, maka output akan berlogika 1.
  6. Gerbang XOR : Apabila input berbeda (contoh : input A=1, input B=0) maka output akan berlogika 1. Sedangakan jika input adalah sama, maka output akan berlogika 0.
  7. Gerbang XNOR : Apabila input berbeda (contoh : input A=1, input B=0) maka output akan berlogika 0. Sedangakan jika input adalah sama, maka output akan berlogika 1. 
10. OPAMP

Operational Amplifier atau lebih dikenal dengan istilah Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas. Dalam bahasa Indonesia, Op-Amp atau Operational Amplifier sering disebut juga dengan Penguat Operasional. Terminal yang terdapat pada Simbol Op-Amp (Operational Amplifier/penguat operasional) diantaranya adalah :

  1. Masukan non-pembalik (Non-Inverting) +
  2. Masukan pembalik (Inverting) –
  3. Keluaran Vout
  4. Catu daya positif +V
  5. Catu daya negatif -V
Karakteristik Faktor Penguat atau Gain pada Op-Amp pada umumnya ditentukan oleh Resistor Eksternal yang terhubung diantara Output dan Input pembalik (Inverting Input). Konfigurasi dengan umpan balik negatif (Negative Feedback) ini biasanya disebut dengan Closed-Loop configuration atau Konfigurasi Lingkar Tertutup.  Sedangkan pada Konfigurasi Lingkar Terbuka atau Open-Loop Configuration, besar penguatannya adalah tak terhingga (∞) sehingga besarnya tegangan output hampir atau mendekati tegangan Vcc.
Konfigurasi Op-Amp (Closed loop and Open Loop)
    11. LED









Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya. Bentuk LED mirip dengan sebuah bohlam (bola lampu) yang kecil dan dapat dipasangkan dengan mudah ke dalam berbagai perangkat elektronika. Berbeda dengan Lampu Pijar, LED tidak memerlukan pembakaran filamen sehingga tidak menimbulkan panas dalam menghasilkan cahaya.  Oleh karena itu, saat ini LED (Light Emitting Diode) yang bentuknya kecil telah banyak digunakan sebagai lampu penerang dalam LCD TV yang mengganti lampu tube. LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda. 
Keanekaragaman Warna pada LED tersebut tergantung pada wavelength (panjang gelombang) dan senyawa semikonduktor yang dipergunakannya. Berikut ini adalah Tabel Senyawa Semikonduktor yang digunakan untuk menghasilkan variasi warna pada LED :
Bahan SemikonduktorWavelengthWarna
Gallium Arsenide (GaAs)850-940nmInfra Merah
Gallium Arsenide Phosphide (GaAsP)630-660nmMerah
Gallium Arsenide Phosphide (GaAsP)605-620nmJingga
Gallium Arsenide Phosphide Nitride (GaAsP:N)585-595nmKuning
Aluminium Gallium Phosphide (AlGaP)550-570nmHijau
Silicon Carbide (SiC)430-505nmBiru
Gallium Indium Nitride (GaInN)

    12. Motor DC









Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC. Motor Listrik DC atau DC Motor ini menghasilkan sejumlah putaran per menit atau biasanya dikenal dengan istilah RPM (Revolutions per minute) dan dapat dibuat berputar searah jarum jam maupun berlawanan arah jarum jam apabila polaritas listrik yang diberikan pada Motor DC tersebut dibalikan. 

Bentuk dan Simbol Motor DC

Pengertian Motor DC dan Prinsip Kerjanya

Prinsip Kerja Motor DC
Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan RotorStator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), Armature Winding (Kumparan Jangkar), Commutator (Komutator) dan Brushes (kuas/sikat arang).

    13. Switch


Sakelar adalah sebuah perangkat yang digunakan untuk memutuskan jaringan listrik, atau untuk menghubungkannya. Jadi saklar pada dasarnya adalah alat penyambung atau pemutus aliran listrik.
Cara Kerja Saklar Listrik
Pada dasarnya, sebuah Saklar sederhana terdiri dari dua bilah konduktor (biasanya adalah logam) yang terhubung ke rangkaian eksternal, Saat kedua bilah konduktor tersebut terhubung maka akan terjadi hubungan arus listrik dalam rangkaian. Sebaliknya, saat kedua konduktor tersebut dipisahkan maka hubungan arus listrik akan ikut terputus.

Berikut ini adalah Simbol Saklar berdasarkan jumlah Pole dan Throw-nya.
Simbol Saklar dan Jumlah Pole dan Throw


14. Dioda
Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.Dioda memiliki simbol sebagai berikut :
Cara Kerja Dioda
Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).
A. Kondisi tanpa tegangan
Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda
B. Kondisi tegangan positif (Forward-bias)
Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup
C. Kondisi tegangan negatif (Reverse-bias)
Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.


15. Power Supply

Power Supply adalah salah satu hardware di dalam perangkat komputer yang berperan untuk memberikan suplai daya. Biasanya komponen power supplay ini bisa ditemukan pada chasing komputer dan berbentuk persegi.
Pada dasarnya Power Supply membutuhkan sumber listrik yang kemudian diubah menjadi energi yang menggerakkan perangkat elektronik. Sistem kerjanya cukup sederhana yakni dengan mengubah daya 120V ke dalam bentuk aliran dengan daya yang sesuai kebutuhan komponen-komponen tersebut. Sesuai dengan pengertian power supply pada komputer, maka fungsi utamanya adalah untuk mengubah arus AC menjadi arus DC yang kemudian diubah menjadi daya atau energi yang dibutuhkan komponen-komponen pada komputer seperti motherboard, CD Room, Hardisk, dan komponen lainnya.
Berdasarkan rancangannya, power supply dapat diklasifikasikan menjadi dua jenis, yaitu:
  1. Power Supply/ Catu Daya Internal; yaitu power supply yang dibuat terintegrasi dengan motherboard atau papan rangkaian induk. Contohnya; ampilifier, televisi, DVD Player; power supply-nya menyatu dengan motherboard di dalam chasing perangkat tersebut.
  2. Power Supply/ Catu Daya Eksternal; yaitu power supply yang dibuat terpisah dari motherboard perangkat elektroniknya. Contohnya charger Laptop dan charger HP.
16. Battery
Baterai atau elemen kering adalah salah satu alat listrik yang berfungsi sebagai penyimpan energi listrik dan mengeluarkan tegangan dalam bentuk listrik (sebagai sumber tegangan). Simbol baterai pada suatu rangkaian listrik dengan tegangan DC atau rangkaian elektronika :


Pada umumnya baterai terdiri dari tiga komponen yang penting yaitu :
1. Batang karbon (C) sebagai anode (kutub positif baterai).
2. Seng (Zn) sebagai katode (kutub negatif baterai)
3. Amonium dioksida (NH4CI) sebagai larutan elektrolit (penghantar)

Terdapat dua jenis baterai yaitu :
1. Baterai Primer 
Baterai adalah baterai yang hanya dapat digunakan sekali, menggunakan reaksi kimia yang tidak dapat dibalik (irreversible reaction).  pada umumnya dijual adalah baterai yang bertegangan listrik 1,5 volt.
2. Baterai Sekunder
Baterai sekunder atau biasanya disebut rechargeable battery adalah baterai yang dapat di isi ulang menggunakan reaksi kimia yang bersifat dapat dibalik (reversible reaction) biasanya digunakan pada telepon genggam.
Adapun salah satu persamaan menghitung tegangan adalah :

P = V x I
Keterangan :
P  = Daya (W)
V = Tegangan yang terukur (V)
I   = Arus yang terukur (I)

17. IC 4013




Pinout: 


Spesifikasi: 



Fungsi utama IC 4013 adalah untuk menyimpan data biner dan mengontrol waktu sinyal input dan outputnya. Berikut adalah fitur dan fungsi utama dari IC 4013:

1. Flip-Flop Tipe-D Ganda: IC 4013 berisi dua flip-flop tipe-D independen dalam satu paket.

2. Penyimpanan Data: Setiap flip-flop dapat menyimpan satu bit data (baik logika tinggi atau logika rendah) berdasarkan inputnya.
Keluaran Q dan Q': Setiap flip-flop memiliki dua keluaran:
  • Q: Output normal dari flip-flop.
  • Q': Output komplemen (terbalik) dari flip-flop.
3. Reset (R) dan Set (S) Input: IC 4013 juga menyediakan input asinkron opsional untuk mengatur ulang dan mengatur output flip-flop. Masukan ini memungkinkan kontrol manual dari keadaan keluaran terlepas dari sinyal clock.

4. Tegangan Pasokan: Biasanya 5V
  • IC beroperasi dengan tegangan suplai sekitar 5 volt, yang umum untuk logika CMOS.
5. Jenis Paket: DIP (Dual In-Line Package)
  • IC 4013 umumnya tersedia dalam paket DIP, yang terdiri dari bodi berbentuk persegi panjang dengan dua baris pin.
IC 4013 banyak digunakan dalam rangkaian digital untuk aplikasi seperti penyimpanan data, sinkronisasi, pembagian frekuensi, dan logika sekuensial. Penting untuk berkonsultasi dengan lembar data yang disediakan oleh pabrikan untuk spesifikasi terperinci, karakteristik kelistrikan, konfigurasi pin, dan pedoman penggunaan yang direkomendasikan.

Tabel kebenaran: 


4. Percobaan[Kembali]

    1. Prosedur Percobaan

  • Siapkan semua alat dan bahan yang diperlukan
  • Siapkan alat dan bahan yang akan digunakan di library proteus
  • Susunlah alat dan bahan tersebut seperti gambar di bawah ini
  • Resistor  yang digunakan ada diberi hambatan 10k dan 220.
  • Baterai yang digunakan diberi tegangan yaitu 12V.
  • Power yang digunakan diberi tegangan yaitu 5V dan 7V.
  • Buzzer yang digunakan diberi tegangan 12V
  • Relay yang digunakan diberi tegangan 5V.
  • Setelah semua komponen terangkai, maka cobalah untuk menjalankannya.
  • Jalankan sensor magnet, Mq-2, touch, dan infrared  dengan menekan logicstate yaitu mengubah dari angka nol menjadi satu.
  • Jika rangkaian benar, maka sensor magnet, Mq-2, touch, dan infrared akan bekerja  sehingga led menyala, buzzer berbunyi dan motor pun bergerak.
  • Jika logicstatenya tidak dijalankan atau berlogika 0 maka motor tidak akan bergerak, led tidak menyala, dan buzzer tidak berbunyi

    2. Rangkaian Percobaan

    3. Prinsip Kerja

Pada aplikasi keamanan parkir ini, terdapat beberapa sensor yang kita gunakan yaitu sensor touch, sensor mq-2, sensor infrared, dan sensor magnetik

Yang pertama, saat kendaraan yang ada di parkiran akan masuk menuju parkiran, maka sensor infrared akan mendeteksi kedatangan dari kendaraan tersebut dengan memantulkan sinar infrared, sehingga sensor infrared aktif ditandai dengan logika 1, maka output sensor menghasilkan tegangan sebesar 5V lalu diumpankan ke R4, lalu menuju ke kaki base transistor. Vbe bernilai 0.79V sehingga transistor aktif, dan arus dapat mengalir dari power menuju relay, menuju kaki kolektor, emitor, dan ke ground. Transistor bekerja dengan selfbias. Karena arus mengalir pada relay, maka loop rangkaian tertutup dan arus mengalir sehingga menghidupkan LED merah yang berfungsi sebagai indikator bahwa ada kendaraan akan masuk

Selain itu, jika ingin membuka portal parkir secara manual, kita dapat menekan tombol didekat plang maka sensor touch akan aktif, pada output maka akan menghasilkan tegangan sebesar 5V lalu diumpankan ke R3, lalu menuju ke kaki base transistor. Vbe bernilai 0.79V sehingga transistor aktif, dan arus dapat mengalir dari powermenuju relay, menuju kaki kolektor, emitor, dan ke ground. Transistor bekerja dengan fixed bias. Karena arus mengalir pada relay, maka loop rangkaian tertutup dan arus mengalir sehingga motor yang berfungsi untuk membuka dan menutup portal parkir.

Indikasi kendaraan sudah parkir dapat diketahui dengan adanya sensor magnet yang terletak dibawah tanah. Saat ada kendaraan parkir maka sensor akn aktif, maka akan menghasilkan tegangan sebesar 5V lalu diumpankan ke R9, lalu menuju ke kaki base transistor. Vbe bernilai 0.79V sehingga transistor aktif, dan arus dapat mengalir dari power menuju relay, menuju kaki kolektor, emitor, dan ke ground. Transistor bekerja dengan fixed bias. Karena arus mengalir pada relay, maka loop rangkaian tertutup dan arus mengalir sehingga menghidupkan LED merah yang berfungsi sebagai indikator bahwa kendaraan sudah parkir.

Indikatr dapat dilihat pada asap gas kendaraan. Apabila ada asap kendaraan maka sensor Mq-2 akan aktif, maka akan menghasilkan tegangan sebesar 5V pada output sensor lalu diumpankan ke input D pada d flip flop, dimana sesuai sifatnya ketika input S dan R berloggika 0, dan input Dberlogika 1 maka output dari Q adalah berlogika 1 atau aktif dan Q’ berlogika 0, lalu output aktif dari Q diumpankan ke R5, lalu menuju ke kaki base transistor. Vbe bernilai 0.79V sehingga transistor aktif, dan arus dapat mengalir dari powermenuju relay, menuju kaki kolektor, emitor, dan ke ground. Transistor bekerja dengan fixed bias. Karena arus mengalir pada relay, maka loop rangkaian tertutup dan arus mengalir sehingga menghidupkan 4 buah LED merah yang berfungsi sebagai indikator bahwa dapur dalam keadaan tidak aman


1. Video Merangkai Rangkaian


2. Video Penjelasan




  1. Download Library Sensor MQ-2 klik disini
  2. Download Library Sensor Magnetik klik disini
  3. Download Library Sensor Infrared klik disini
  4. Download Library Sensor Touch klik disini
  • Download Datasheet Sensor :
  1. Download Datasheet Sensor MQ-2 klik disini
  2. Download Library Sensor Magnet klik disini
  3. Download Datasheet Sensor Infrared klik disini
  4. Download Datasheet Sensor Touch klik disini
  • Download Datasheet Komponen :
  1. Download Datasheet Resistor klik disini
  2. Download Datasheet Transistor NPN klik disini
  3. Download Datasheet OPAMP klik disini
  4. Download Datasheet LED klik disini
  5. Download Data Sheet Motor DC klik disini
  6. Download Datasheet Relay klik disini
  7. Download Datasheet Switch klik disini
  8. Download Datasheet IC 4013 klik disini

Tidak ada komentar:

Posting Komentar

Entri yang Diunggulkan

Modul 4 [menuju akhir] [KEMBALI KE MENU SEBELUMNYA] DAFTAR ISI 1. Pendahuluan 2. Tujuan 3. Alat dan Bahan 4. Dasar Teori 5. Percobaan Percob...